Respuesta :
Answer:
Simplified form of the equation [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex] is [tex]\left(\frac{2 x+1}{x-1}\right)[/tex]
Explanation:
Given equation; [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]
Solution:
The above equation can be simplified by factorisation method
The equation is [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]
And equation[tex]2 x^{2}-7 x-4[/tex] can be factorised as follows
[tex]2 x^{2}-7 x-4=(x-4)(2 x+1)[/tex]
And equation [tex]x^{2}-5 x+4[/tex] can be factorised as
[tex]x^{2}-5 x+4=(x-4)(x-1)[/tex]
Equate these values in the given equation we get
[tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]=[tex]\left[\left(\frac{(x-4)(2 x+1)}{(x-4)(x-1)}\right)\right][/tex]
Cancelling the similar terms in the above expression we get
[tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]=[tex]\left(\frac{2 x+1}{x-1}\right)[/tex]
Result:
Thus the simplified form of the equation [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]=[tex]\left(\frac{2 x+1}{x-1}\right)[/tex]
Answer:
on edge its A
Step-by-step explanation:
Cant beleve how hard it was to find this on brainly