Respuesta :

Answer:

Simplified form of the equation [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex] is [tex]\left(\frac{2 x+1}{x-1}\right)[/tex]

Explanation:

Given equation; [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]

Solution:

The above equation can be simplified by factorisation method

The equation is [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]

And equation[tex]2 x^{2}-7 x-4[/tex] can be factorised as follows

[tex]2 x^{2}-7 x-4=(x-4)(2 x+1)[/tex]

And equation [tex]x^{2}-5 x+4[/tex] can be factorised as

[tex]x^{2}-5 x+4=(x-4)(x-1)[/tex]

Equate these values in the given equation we get

[tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]=[tex]\left[\left(\frac{(x-4)(2 x+1)}{(x-4)(x-1)}\right)\right][/tex]

Cancelling the similar terms in the above expression we get

[tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]=[tex]\left(\frac{2 x+1}{x-1}\right)[/tex]

Result:

Thus the simplified form of the equation [tex]\left(\frac{2 x^{2}-7 x-4}{x^{2}-5 x+4}\right)[/tex]=[tex]\left(\frac{2 x+1}{x-1}\right)[/tex]

Answer:

on edge its A

Step-by-step explanation:

Cant beleve how hard it was to find this on brainly