Respuesta :

Answer:

x ∈ R, x ≠ 1

Step-by-step explanation:

f(g(x))

= f( [tex]\frac{4}{x-2}[/tex] )

= [tex]\frac{1}{\frac{4}{x-2}+4 }[/tex]

= [tex]\frac{1}{\frac{4+4(x-2)}{x-2} }[/tex]

= [tex]\frac{1}{\frac{4+4x-8}{x-2} }[/tex]

= [tex]\frac{x-2}{4x-4}[/tex]

The denominator of f(g(x)) cannot be zero as this would make f(g(x)) undefined. Equating the denominator to zero and solving gives the value that x cannot be, that is

4x - 4 = 0 ⇒ 4x = 4 ⇒ x = 1 ← excluded value

Domain : x ∈ R, x ≠ 1, that is

(- ∞, 1) ∪ (1, ∞ ) ← in interval notation