Respuesta :
Answer:
h= 37.9 m
Explanation:
Given that
SG = 0.8 for fuel so density of fluid will be 800 kg/m³.
We know that SG = 13.6 For Hg so density will be 13600 kg/m³.
Now by balancing the pressure
[tex]\rho_d\times g\times h +\rho_d\times g\times 1.2 =\rho_{hg}\times g\times 2.3[/tex]
[tex]800\times 9.81\times h+ 800\times 9.81\times 1.2 =13600\times 9.81\times 2.3[/tex]
[tex]800\times 9.81\times h =13600\times 9.81\times 2.3-800\times 9.81\times 1.2[/tex]
[tex]h=\dfrac{297439.2}{800\times 9.81}[/tex]
h= 37.9 m

Answer:
h = 37.9 m
Explanation:
Assume the height of fuel be h meter in tank
specific gravity of diesel is 0.8
specific gravity of mercury is 13.6
we know rhat density of water is 1000kg/m^3
so density of mercury is [tex]13.6 \times 10^3 kg/m^3[/tex]
density of mercury is [tex]0.8\times 10^3 kg/m^3[/tex]
Now equating PRESSURE at AA' position and tank
[tex]\rho_d g (h+ 1.2) = \rho_{hg} g2.3[/tex]
[tex]h +1.2 = \frac{13.6 \times 10^3 \times 2.3}{0.8\times 10^{3}}[/tex]
h = 39.1 - 1.2
h = 37.9 m
