Respuesta :
Answer:
The kinetic frictional force when:
a) The elevator is stationary is [tex]f_{k}=24.12\:N[/tex]
b) The elevator accelerates upward is [tex]f_{k}=31.30\:N[/tex]
c) The elevator accelerates downward is [tex]f_{k}=16.93\:N[/tex]
Explanation:
Given
[tex]m= 5.53 \:kg\\\mu_k = 0.445[/tex]
We need to determine the kinetic frictional force when:
- The elevator is stationary
- The elevator accelerates upward
- The elevator accelerates downward
In each of the three cases, the kinetic frictional force is given by [tex]f_{k}=\mu_kF_N[/tex]. However the normal force [tex]F_N[/tex] varies from case to case.
To determine the normal force we can use a Free-body diagram,
The sum of the forces vertically gives us
[tex]\sum F_y=F_N-mg=ma_y[/tex]
so [tex]F_N[/tex] is
[tex]F_N=ma_y+mg[/tex]
a) When the elevator is stationary, its acceleration is [tex]a_y= 0 \:\frac{m}{s^2}[/tex]
[tex]f_{k}=\mu_kF_N\\f_{k}=\mu_k\cdot (ma_y+mg)[/tex]
[tex]f_{k}=0.445\cdot (5.53\:kg\cdot 0\:\frac{m}{s^2}+5.53\:kg\cdot 9.80 \:\frac{m}{s^2} )\\f_{k}=24.12\:N[/tex]
b) When the elevator accelerates upward, [tex]a_y= +2.92 \:\frac{m}{s^2}[/tex]
[tex]f_{k}=\mu_kF_N\\f_{k}=\mu_k\cdot (ma_y+mg)[/tex]
[tex]f_{k}=0.445\cdot (5.53\:kg\cdot 2.92\:\frac{m}{s^2}+5.53\:kg\cdot 9.80 \:\frac{m}{s^2} )\\f_{k}=31.30\:N[/tex]
c) When the elevator accelerates downward, [tex]a_y= -2.92 \:\frac{m}{s^2}[/tex]
[tex]f_{k}=\mu_kF_N\\f_{k}=\mu_k\cdot (ma_y+mg)[/tex]
[tex]f_{k}=0.445\cdot (5.53\:kg\cdot -2.92\:\frac{m}{s^2}+5.53\:kg\cdot 9.80 \:\frac{m}{s^2} )\\f_{k}=16.93\:N[/tex]
