Respuesta :
Answer:
Step-by-step explanation:
It maybe will be [tex]\neq x^{2} \leq \\ \\ \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \sqrt{x} \\ \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. x^{2} x^{2} \sqrt{x} \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \neq \sqrt{x} \sqrt[n]{x} \frac{x}{y} \frac{x}{y} \alpha \beta x_{123} \\ x^{2} \int\limits^a_b {x} \, dx x^{2}[/tex]
Answer:
Linear equations can be a useful tool for comparing rates of pay. For example, if one company offers to pay you $450 per week and the other offers $10 per hour, and both ask you to work 40 hours per week, which company is offering the better rate of pay? A linear equation can help you figure it out! The first company's offer is expressed as 450 = 40x. The second company's offer is expressed as y = 10(40). After comparing the two offers, the equations tell you that the first company is offering the better rate of pay at $11.25 per hour.
Step-by-step explanation: