Respuesta :

Answer:

1) [tex]\frac{18}{7}[/tex]

2) [tex]\frac{175\sqrt{3}}{18}[/tex]

Step-by-step explanation:

* Lets explain how to simplify a square root

1)

∵ [tex]2\sqrt{21}[/tex] × [tex]\sqrt{27}[/tex] ÷ [tex]\sqrt{343}[/tex]

∵ [tex]\sqrt{21}=\sqrt{3}[/tex] × [tex]\sqrt{7}[/tex]

∴ [tex]2\sqrt{21}[/tex] = [tex]2\sqrt{3}[/tex] × [tex]\sqrt{7}[/tex]

∵ [tex]\sqrt{27}[/tex] = [tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex]

∵ [tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] = 3

∴ [tex]\sqrt{27}[/tex] = [tex]3\sqrt{3}[/tex]

∴ [tex]2\sqrt{21}[/tex] × [tex]\sqrt{27}[/tex] =

  [tex]2\sqrt{3}[/tex] × [tex]\sqrt{7}[/tex] × [tex]3\sqrt{3}[/tex]

∵ [tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] = 3

∵ 2 × 3 × 3 = 18

∴ [tex]2\sqrt{21}[/tex] × [tex]\sqrt{27}[/tex] = [tex]18\sqrt{7}[/tex]

∵ [tex]\sqrt{343}[/tex] = [tex]\sqrt{7}[/tex] × [tex]\sqrt{7}[/tex] × [tex]\sqrt{7}[/tex]

∵ [tex]\sqrt{7}[/tex] × [tex]\sqrt{7}[/tex] = 7

∴ [tex]\sqrt{343}[/tex] = [tex]7\sqrt{7}[/tex]

∵ [tex]2\sqrt{21}[/tex] × [tex]\sqrt{27}[/tex] ÷ [tex]\sqrt{343}[/tex] =

  [tex]18\sqrt{7}[/tex] ÷ [tex]7\sqrt{7}[/tex]

∵ [tex]\sqrt{7}[/tex] ÷ [tex]\sqrt{7}[/tex] = 1

∴ [tex]2\sqrt{21}[/tex] × [tex]\sqrt{27}[/tex] ÷ [tex]\sqrt{343}[/tex] =

  [tex]\frac{18}{7}[/tex]

2)

∵ [tex]7\sqrt{5}[/tex] × [tex]\sqrt{125}[/tex] ÷ [tex]2\sqrt{27}[/tex]  

∵ [tex]\sqrt{125}[/tex] = [tex]\sqrt{5}[/tex] × [tex]\sqrt{5}[/tex] × [tex]\sqrt{5}[/tex]

∵ [tex]\sqrt{5}[/tex] × [tex]\sqrt{5}[/tex] = 5

∴ [tex]\sqrt{125}[/tex] = [tex]5\sqrt{5}[/tex]

∴ [tex]7\sqrt{5}[/tex] × [tex]\sqrt{125}[/tex] =

  [tex]7\sqrt{5}[/tex] × [tex]5\sqrt{5}[/tex]

∵ [tex]\sqrt{5}[/tex] × [tex]\sqrt{5}[/tex] = 5

∴ [tex]7\sqrt{5}[/tex] × [tex]\sqrt{125}[/tex] = 7 × 5 × 5 = 175

∵ [tex]2\sqrt{27}[/tex] = [tex]2\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex]

∵ [tex]\sqrt{3}[/tex] × [tex]\sqrt{3}[/tex] = 3

∴ [tex]2\sqrt{27}[/tex] = [tex]6\sqrt{3}[/tex]

∴ [tex]7\sqrt{5}[/tex] × [tex]\sqrt{125}[/tex] ÷ [tex]2\sqrt{27}[/tex] =

  175 ÷ [tex]6\sqrt{3}[/tex] = [tex]\frac{175}{6\sqrt{3}}[/tex]

∵ [tex]\frac{175}{6\sqrt{3}}[/tex] not in the simplest form because

  the denominator has square root

∴ Multiply up and down by [tex]\sqrt{3}[/tex]

∴  [tex]\frac{175}{6\sqrt{3}}[/tex] = [tex]\frac{175\sqrt{3}}{6\sqrt{3}*\sqrt{3}}[/tex]

∴  [tex]\frac{175}{6\sqrt{3}}[/tex] = [tex]\frac{175\sqrt{3}}{18}[/tex]

∴ [tex]7\sqrt{5}[/tex] × [tex]\sqrt{125}[/tex] ÷ [tex]2\sqrt{27}[/tex] =

  [tex]\frac{175\sqrt{3}}{18}[/tex]