What is the simplified form of the following expression? Assume x = 0 ^5 sqrt 10x / 3x^3

Answer:
[tex]\frac{\sqrt[5]{810x^3}}{3x}[/tex]
Step-by-step explanation:
We are given that an expression
[tex]\sqrt[5]{\frac{10x}{3x^3}}[/tex]
We have to simplify the given expression.
[tex]\sqrt[5]{\frac{10x}{3x^3}}[/tex]
Multiply numerator and denominator by [tex]81x^2[/tex]
[tex]\sqrt[5]{\frac{10\cdot 81x^3}{243x^5}}[/tex]
After multiplying ,then we get
[tex]\sqrt[5]{\frac{810x^3}{243x^5}}[/tex]
[tex]\frac{\sqrt[5]{810x^3}}{3x}[/tex]
Hence, option d is true.
Answer:[tex]\frac{\sqrt[5]{810x^3}}{3x}[/tex]