Respuesta :

Answer:

x = 6

y = 24

Step-by-step explanation:

(14x + 4) + (16x - 4) <--- you add them because they are supplementary angles and are equal to 180°

(14x + 4) + (16x - 4) = 180

30x = 180

[tex]\frac{30x}{30} = \frac{180}{30}[/tex]

 x = 6

Then you plug in 6 to (14x + 4)

(14(6) + 4) = 84 + 4 = 88

180 - 88 = 92

Now subtract 92 from 180 and make it equal to (4y - 8) to get y.

 (4y - 8) = 180 - 92 ---> (4y - 8) = 88

                                           + 8    + 8

                                         4y = 96

                                          [tex]\frac{4y}{4} = \frac{96}{4}[/tex]

                                               y = 24

gmany

Answer:

x = 6, y = 24

Step-by-step explanation:

We have the vertical angles and supplementary angles.

Vertical angles are congruent. Therefore we have the equation:

[tex](1)\qquad14x+4=4y-8[/tex]

Supplementary angles add up to 180°. Therefore we have the equation:

[tex](2)\qquad(16x-4)+(14x+4)=180[/tex]

Solve (2):

[tex](16x-4)+(14x+4)=180\qquad\text{combine like terms}\\(16x+14x)+(-4+4)=180\\30x=180\qquad\text{divide both sides by 30}\\x=6[/tex]

Put the value of x to (1) and sole:

[tex]4y-8=14(6)+4\\4y-8=84+4\\4y-8=88\qquad\text{add 8 to both sides}\\4y=96\qquad\text{divide both sides by 4}\\y=24[/tex]

Ver imagen gmany