Answer:
[tex]\alpha = (3433\times 10^{-4})"[/tex]
Explanation:
given data:
distance between our solar system & castor is d 9.5 light year
we knwo that
[tex]1 \ light\ year =9.46\times 10^{12} km[/tex]
so [tex]d = 8.988\times 10^13 km[/tex]
distance between sun and earth is [tex]149.6\ million\ km = 149.6\times 10^6 km[/tex]
let angular resolution be[tex] \alpha[/tex]
by angular resolution formula
[tex]\alpha = \frac{s}{2\pi d} 360\ degree[/tex]
[tex]= \frac{149.6\times 10^6}{2\pi \times 8.98\times 10^{13}} \times360[/tex]
[tex] = 953.65\times 10^{-7}[/tex]
[tex] = 95.365 \times 10^{-6}[/tex]
now [tex]= 95.365 \times 10^{-6} = = 95.365 \times 10^{-6} \times \frac{60'}{1^o} \times \frac{60"}{1'}[/tex]
[tex]\alpha = (3433\times 10^{-4})"[/tex]