You drop a rock from the top of a building of height h. Your co-experimenter throws a rock from the same spot with a vertically downward speed vo, a time t after you released your rock. The two rocks hit the ground at the same time. Find the expression for the time t, in terms of vo, g, and h.

Respuesta :

Answer:

[tex]t=\sqrt{2h/g}-(1/g)*(\sqrt{v_{o}^2+2gh}-v_{o})[/tex]

Explanation:

First person:

[tex]y(t)=y_{o}-v_{o}t-1/2*g*t^{2}[/tex]

[tex]v_{o}=0[/tex]     the rock is dropped

[tex]y_{o}=h[/tex]    

[tex]y(t)=h-1/2*g*t^{2}[/tex]

after t1 seconds it hit the ground, y(t)=0

[tex]0=h-1/2*g*t_{1}^{2}[/tex]

[tex]t_{1}=\sqrt{2h/g}[/tex]

Second person:

[tex]y(t)=y_{o}-v_{o}t-1/2*g*t^{2}[/tex]

[tex]v_{o}[/tex]     the rock has a initial downward speed  

[tex]y_{o}=h[/tex]    

[tex]y(t)=h-v_{o}t-1/2*g*t^{2}[/tex]

after t2 seconds it hit the ground, y(t)=0

[tex]0=h-v_{o}t_{2}-1/2*g*t_{2}^{2}[/tex]

[tex]g*t_{2}^{2}+2v_{o}t_{2}-2h=0[/tex]

[tex]t_{2}=(1/2g)*(-2v_{o}+\sqrt{4v_{o}^2+8gh})[/tex]

the time t when the second person throws the rock after the first person release the rock is:

t=t1-t2

[tex]t=\sqrt{2h/g}-(1/g)*(\sqrt{v_{o}^2+2gh}-v_{o})[/tex]