Respuesta :

Answer:

[tex]y(x)=x^2+5x[/tex]

Step-by-step explanation:

Given: [tex]y'=\sqrt{4y+25}[/tex]

Initial value: y(1)=6

Let [tex]y'=\dfrac{dy}{dx}[/tex]

[tex]\dfrac{dy}{dx}=\sqrt{4y+25}[/tex]

Variable separable

[tex]\dfrac{dy}{\sqrt{4y+25}}=dx[/tex]

Integrate both sides

[tex]\int \dfrac{dy}{\sqrt{4y+25}}=\int dx[/tex]

[tex]\sqrt{4y+25}=2x+C[/tex]

Initial condition, y(1)=6

[tex]\sqrt{4\cdot 6+25}=2\cdot 1+C[/tex]

[tex]C=5[/tex]

Put C into equation

Solution:

[tex]\sqrt{4y+25}=2x+5[/tex]

or

[tex]4y+25=(2x+5)^2[/tex]

[tex]y(x)=\dfrac{1}{4}(2x+5)^2-\dfrac{25}{4}[/tex]

[tex]y(x)=x^2+5x[/tex]

Hence, The solution is [tex]y(x)=\dfrac{1}{4}(2x+5)^2-\dfrac{25}{4}[/tex] or [tex]y(x)=x^2+5x[/tex]