A bird flies 2.0km south and then 1.5km 37° east of south. How far will it have to fly to get back to its original place if it flies in a straight line?

Respuesta :

Answer:

3.324 km

Explanation:

d1 = 2 km south

d2 = 1.5 km at 37° east of south

Write the displacements in vector form

[tex]\overrightarrow{d_{1}}=-2\widehat{j}[/tex]

[tex]\overrightarrow{d_{2}}=1.5\left (Sin37\widehat{i}-Cos37\widehat{j}  \right )=0.9\widehat{i}-1.2\widehat{j}[/tex]

The resultant displacement is given by

[tex]\overrightarrow{d} = \overrightarrow{d_{1}}+ \overrightarrow{d_{2}}[/tex]

[tex]\overrightarrow{d} = \left ( 0.9 \right )\widehat{i}+\left ( -2-1.2 \right )\widehat{j}[/tex]

[tex]\overrightarrow{d} = \left ( 0.9 \right )\widehat{i}+\left ( -3.2\right )\widehat{j}[/tex]

The magnitude of displacement is given by

[tex]d=\sqrt{0.9^{2}+\left ( -3.2 \right )^{2}}=3.324 km[/tex]

Thus, the bird has to travel 3.324 km in a straight line to return to its original place.