contestada

In a first-order decomposition reaction. 20.8% of a compound decomposes in 7.8 min. How long (in min) does it take for 88.2% of the compound to decompose?

Respuesta :

Answer:

t = 71.47 min

Explanation:

Using integrated rate law for first order kinetics as:

[tex][A_t]=[A_0]e^{-kt}[/tex]

Where,  

[tex][A_t][/tex] is the concentration at time t

[tex][A_0][/tex] is the initial concentration

Given:

20.8 % is decomposed which means that 0.208 of [tex][A_0][/tex] is decomposed. So,

[tex]\frac {[A_t]}{[A_0]}[/tex] = 1 - 0.208 = 0.792

t = 7.8 min

[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]

[tex]0.792=e^{-k\times 7.8}[/tex]

k = 0.0299 min⁻¹

Also,

Given:

88.2 % is decomposed which means that 0.882 of [tex][A_0][/tex] is decomposed. So,

[tex]\frac {[A_t]}{[A_0]}[/tex] = 1 - 0.882 = 0.118

t = ?

[tex]\frac {[A_t]}{[A_0]}=e^{-k\times t}[/tex]

[tex]0.118=e^{-0.0299\times t}[/tex]

t = 71.47 min