Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.
[tex]Q = \int\limits^{2*\pi}_0\int\limits^\pi_0 \int\limits^r_0 {k * r} \, dr * r*d\theta* r*d\phi[/tex]
[tex]Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0 \int\limits^r_0 {r^3} \, dr * d\theta* d\phi[/tex]
[tex]Q = k *\int\limits^{2*\pi}_0\int\limits^\pi_0 {\frac{r^4}{4}} \, d\theta* d\phi[/tex]
[tex]Q = k *\int\limits^{2*\pi}_0 {\frac{\pi r^4}{4}} \, d\phi[/tex]
[tex]Q = \frac{\pi^2 r^4}{2}}[/tex]
Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)