In a Young's two-slit experiment it is found that an nth-order maximum for a wavelength of 680.0 nm coincides with the (n+1)th maximum of light of wavelength 510.0nm. Determine n.

Respuesta :

Answer:

n = 3

Solution:

Since, the slit used is same and hence slit distance 'x' will also be same.

Also, the wavelengths coincide, [tex]\theta [/tex] will also be same.

Using Bragg's eqn for both the wavelengths:

[tex]xsin\theta = n\lambda[/tex]

[tex]xsin\theta = n\times 680.0\times 10^{- 9}[/tex]           (1)

[tex]xsin\theta = (n + 1)\lambda[/tex]

[tex]xsin\theta = (n + 1)\times 510.0\times 10^{- 9}[/tex]         (2)

equate eqn (1) and (2):

[tex] n\times 680.0\times 10^{- 9} = (n + 1)\times 510.0\times 10^{- 9}[/tex]

[tex]n = \frac{510.0\times 10^{- 9}}{680.0\times 10^{- 9} - 510.0\times 10^{- 9}}[/tex]

n = 3