Answer:
[tex]C(x)=4000+0.3x[/tex]
[tex]R(x)=1.75x[/tex]
[tex]Profit= 1.45x-4000[/tex]
Step-by-step explanation:
We are given that A rose garden can be planted for $4000.
The marginal cost of growing a rose is estimated to $0.30,
Let x be the number of roses
So, Marginal cost of growing x roses = [tex]0.3x[/tex]
Total cost = [tex]4000+0.3x[/tex]
So, Cost function : [tex]C(x)=4000+0.3x[/tex] ---A
Now we are given that the total revenue from selling 500 roses is estimated to $875
So, Marginal revenue = [tex]\frac{\text{Total revenue}}{\text{No. of roses}}[/tex]
Marginal revenue = [tex]\frac{875}{500}[/tex]
Marginal revenue = [tex]1.75[/tex]
Marginal revenue for x roses = [tex]1.75x[/tex]
So, Revenue function = [tex]R(x)=1.75x[/tex] ----B
Profit = Revenue - Cost
[tex]Profit= 1.75x-4000-0.3x[/tex]
[tex]Profit= 1.45x-4000[/tex] ---C
Now Plot A , B and C on Graph
[tex]C(x)=4000+0.3x[/tex] -- Green
[tex]R(x)=1.75x[/tex] -- Purple
[tex]Profit= 1.45x-4000[/tex] --- Black
Refer the attached graph