Answer:
Part a)
[tex]L_o = 6.3181 cm[/tex]
Part b)
[tex]T = 131.3 ^oC[/tex]
Explanation:
Let the length of the rod at 0 degree Celsius is given as Lo
now we have
[tex]L = L_o( 1 + \alpha \Delta T)[/tex]
now we know that
[tex]L_o[/tex] = Length of rod at zero degree C
Part a)
[tex]6.3243 = L_o(1 + \alpha (16 - 0))[/tex]
[tex]6.3568 = L_o(1 + \alpha (100 - 0))[/tex]
now we have
[tex]\frac{6.3568}{6.3243} = \frac{1 + 100 \alpha}{1 + 16 \alpha}[/tex]
[tex]1.005(1 + 16 \alpha) = 1 + 100 \alpha[/tex]
[tex]83.918\alpha = 5.138\times 10^{-3}[/tex]
[tex]\alpha = 6.12 \times 10^{-5}[/tex]
now we have
[tex]L_o = 6.3181 cm[/tex]
Part b)
length of the rod is 6.3689 cm
now we have
[tex]L = L_o(1 + \alpha\Delta T)[/tex]
[tex]6.3689 = 6.3181(1 + \alpha \Delta T)[/tex]
[tex]6.3689 = 6.3181(1 + (6.12 \times 10^{-5})(T - 0))[/tex]
[tex]1.008 = 1 + (6.12 \times 10^{-5})T[/tex]
[tex]T = 131.3 ^oC[/tex]