A student dissolved 1.805g of a monoacidic weak base in 55mL of water. Calculate the equilibrium pH for the weak monoacidic base (B) solution. Show all your work.

pKb for the weak base = 4.82.

Molar mass of the weak base = 82.0343g/mole.

Note: pKa = -logKa

pKb = -logKb

pH + pOH = 14

[H+ ] [OH- ] = 10^-14

Respuesta :

Answer:

11.39

Explanation:

Given that:

[tex]pK_{b}=4.82[/tex]

[tex]K_{b}=10^{-4.82}=1.5136\times 10^{-5}[/tex]

Given that:

Mass = 1.805 g

Molar mass = 82.0343 g/mol

The formula for the calculation of moles is shown below:

[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]

Thus,

[tex]Moles= \frac{1.805\ g}{82.0343\ g/mol}[/tex]

[tex]Moles= 0.022\ moles[/tex]

Given Volume = 55 mL = 0.055 L ( 1 mL = 0.001 L)

[tex]Molarity=\frac{Moles\ of\ solute}{Volume\ of\ the\ solution}[/tex]

[tex]Molarity=\frac{0.022}{0.055}[/tex]

Concentration = 0.4 M

Consider the ICE take for the dissociation of the base as:

                                  B +   H₂O    ⇄     BH⁺ +        OH⁻

At t=0                        0.4                          -              -

At t =equilibrium     (0.4-x)                        x           x            

The expression for dissociation constant is:

[tex]K_{b}=\frac {\left [ BH^{+} \right ]\left [ {OH}^- \right ]}{[B]}[/tex]

[tex]1.5136\times 10^{-5}=\frac {x^2}{0.4-x}[/tex]

x is very small, so (0.4 - x) ≅ 0.4

Solving for x, we get:

x = 2.4606×10⁻³  M

pOH = -log[OH⁻] = -log(2.4606×10⁻³) = 2.61

pH = 14 - pOH = 14 - 2.61 = 11.39