An astronaut must journey to a distant planet, which is 211 light-years from Earth. What speed will be necessary if the astronaut wishes to age only 15 years during the trip? (Give your answer accurater to five decimal places.) Hint: The astronaut will be traveling at very close to the speed of light. Therefore, approximate the dilated trip time At to be 211 years

Respuesta :

Answer:

  • The speed necessary is 0.99747 c

Explanation:

We know that the equation for time dilation will be:

[tex]\Delta t = \frac{\Delta t'}{\sqrt{1-\frac{v^2}{c^2}}}[/tex]

where Δt its the time difference measured from Earth, and Δt' is the time difference measured by the astronaut.

Lets work a little the equation

[tex] \sqrt{1-\frac{v^2}{c^2}} = \frac{\Delta t'}{\Delta t}[/tex]

[tex] 1-\frac{v^2}{c^2}= (\frac{\Delta t'}{\Delta t})^2[/tex]

[tex] \frac{v^2}{c^2}= 1 - (\frac{\Delta t'}{\Delta t})^2[/tex]

[tex] \frac{v}{c}= \sqrt{ 1 - (\frac{\Delta t'}{\Delta t})^2 }[/tex]

[tex] v = \sqrt{ 1 - (\frac{\Delta t'}{\Delta t})^2 } c [/tex]

So, we got our equation. Knowing that Δt=211 years and Δt'=15 years

then

[tex] v = \sqrt{ 1 - (\frac{15 \ y}{211 \ y})^2 } c [/tex]

[tex] v = 0.99747 c [/tex]