Answer: [tex]4.4\times 10^{2}[/tex]
Explanation:
The chemical reaction follows the equation:
[tex]2SO_2(g)+O_2(g)\rightleftharpoons 2SO_3(g)[/tex]
t = 0 [tex]5.000\times 10^{-3}[/tex] [tex]2.50\times 10^{-3}[/tex] 0
At eqm [tex](5.000\times 10^{-3}-2x)[/tex] [tex](2.50\times 10^{-3}-x)[/tex] (2x)
The expression for [tex]K_c[/tex] for the given reaction follows:
[tex]K_c=\frac{[SO_3]^2}{[SO_2]^2[O_2]}[/tex]
[tex]K_c=\frac{[2x]^2}{[5.000\times 10^{-3}-2x]^2[2.50\times 10^{-3}-x]}[/tex]
Given : [tex][SO_2]_{eqm}=2.80\times 10^{-3}[/tex]
[tex]5.000\times 10^{-3}-2x=2.80\times 10^{-3}[/tex]
[tex]x=1.1\times 10^{-3}[/tex]
Putting the values we get:
[tex]K_c=\frac{[2\times 1.1\times 10^{-3}]^2}{[5.000\times 10^{-3}-2\times 1.1\times 10^{-3}]^2[2.50\times 10^{-3}-1.1\times 10^{-3}]}[/tex]
[tex]K_c=4.4\times 10^2[/tex]
Therefore, the equilibrium concentration [tex]4.4\times 10^{2}[/tex]