Answer:
A. 33.77 m/s
B. 6.20 s
Explanation:
Frame of reference:
Gravity g=-9.8 m/s^2; Initial position (roof) y=0; Final Position street y= -21 m
Initial velocity upwards v= 27 m/s
Part A. Using kinematics expression for velocities and distance:
[tex]V_{final}^{2}=V_{initial}^{2}+2g(y_{final}-y_{initial})\\V_{f}^{2}=27^{2}-2*9.8(-21-0)=33.77 m/s[/tex]
Part B. Using Kinematics expression for distance, time and initial velocity
[tex]y_{final}=y_{initial}+V_{initial}t+\frac{1}{2} g*t^{2}\\==> -0.5*9.8t^{2}+27t+21=0\\==> t_1 =-0.69 s\\t_2=6.20 s[/tex]
Since it is a second order equation for time, we solved it with a calculator. We pick the positive solution.