Answer:
r=2.6 cm
Explanation:
Hi!
Lets call steel material 1, and the new alloy material 2. You know their densities:
[tex]\rho_1=8.08*10^3\frac{kq}{m^3}\\\rho_2=3.14*10^3\frac{kq}{m^3}[/tex]
The volume of a sphere with radius r is given by:
[tex]V=\frac{4}{3}\pi r^3[/tex]
Then the masses of the bearings are:
[tex]m_1=\rho_1V_1=\frac{4}{3}\pi r_1^3 \\m_1=\rho_2V_2=\frac{4}{3}\pi r_2^3[/tex]
For the masses to be the same:
[tex]\rho_1 V_1 = \rho_2 V_2\\\frac{V_2}{V_1} =\frac{\rho_1}{\rho_2}\\(\frac{r_2}{r_1})^3 = \frac{8.08}{3.14}=2.57\\r_2=\sqrt[3]{2.57}\;r1 =1.37r_1=1.37*1.9cm=2.6cm[/tex]