Respuesta :

Answer:

Given differential equation,

[tex]\frac{dy}{dx}+5y=7[/tex]

[tex]\frac{dy}{dx}=7-5y[/tex]

[tex]\implies \frac{dy}{7-5y}=dx[/tex]

Taking integration both sides,

[tex]\int \frac{dy}{7-5y}=\int dx[/tex]

Put 7 - 5y = u ⇒ -5 dy = du ⇒ dy = -du/5,

[tex]-\frac{1}{5} \int \frac{du}{u} = \log x + C[/tex]

[tex]-\frac{1}{5} \log u = \log x + C[/tex]

[tex]-\frac{1}{5}\log(7-5y) = \log x + C---(1)[/tex]

Here, x = 0, y = 0

[tex]\implies -\frac{1}{5} \log 7= C[/tex]

Hence, from equation (1),

[tex]-\frac{1}{5}\log(7-5y)=\log x -\frac{1}{5}log 7[/tex]

[tex]\log(7-5y)=\log (\frac{x}{7^\frac{1}{5}})[/tex]

[tex]7-5y=\frac{x}{7^\frac{1}{5}}[/tex]

[tex]7-\frac{x}{7^\frac{1}{5}}=5y[/tex]

[tex]\implies y=\frac{1}{5}(7-\frac{x}{7^\frac{1}{5}})[/tex]