The population of a mining city grows at a rate proportional to that population, in two years the population has doubled and a year later there were 10,000 inhabitants.
What was the initial population?

Respuesta :

Answer:

The initial population was approximatedly 3535 inhabitants.

Step-by-step explanation:

The population of the city can be given by the following differential equation.

[tex]\frac{dP}{dt} = Pr[/tex],

In which r is the rate of growth of the population.

We can solve this diffential equation by the variable separation method.

[tex]\frac{dP}{dt} = Pr[/tex]

[tex]\frac{dP}{P} = r dt[/tex]

Integrating both sides:

[tex]ln P = rt + c[/tex]

Since ln and the exponential are inverse operations, to write P in function of t, we apply ln to both sides.

[tex]e^{ln P} = e^{rt + C}[/tex]

[tex]P(t) = Ce^{rt}[/tex]

C is the initial population, so:

[tex]P(t) = P(0)e^{rt}[/tex]

Now, we apply the problem's statements to first find the growth rate and then the initial population.

The problem states that:

In two years the population has doubled:

[tex]P(2) = 2P(0)[/tex]

[tex]P(t) = P(0)e^{rt}[/tex]

[tex]2P(0) = P(0)e^{2r}[/tex]

[tex]2 = e^{2r}[/tex]

To isolate r, we apply ln both sides

[tex]e^{2r} = 2[/tex]

[tex]ln e^{2r} = ln 2[/tex]

[tex]2r = 0.69[/tex]

[tex]r = \frac{0.69}{2}[/tex]

[tex]r = 0.3466[/tex]

So

[tex]P(t) = P(0)e^{0.3466t}[/tex]

In two years the population has doubled and a year later there were 10,000 inhabitants.

[tex]P(3) = 10,000[/tex]

[tex]P(t) = P(0)e^{0.3466t}[/tex]

[tex]10,000= P(0)e^{0.3466*3}[/tex]

[tex]P(0) = \frac{10,000}{e^{1.04}}[/tex]

[tex]P(0) = 3534.55[/tex]

The initial population was approximatedly 3535 inhabitants.