1. The volume of a cube is increasing at a rate of 1200 cm/min at the moment when the lengths of the sides are 20cm. How fast are the lengths of the sides increasing at that [10] moment?

Respuesta :

Answer:

[tex]1\,\,cm/min[/tex]

Step-by-step explanation:

Let V be the volume of cube and x be it's side .

We know that volume of cube is [tex]\left ( side \right )^{3}[/tex] i.e., [tex]x^3[/tex]

Given :

[tex]\frac{\mathrm{d} V}{\mathrm{d} t}=1200\,\,cm^3/min[/tex]

[tex]x=20\,\,cm[/tex]

To find : [tex]\frac{\mathrm{d} x}{\mathrm{d} t}[/tex]

Solution :

Consider equation [tex]V=x^3[/tex]

On differentiating both sides with respect to t , we get

[tex]\frac{\mathrm{d} V}{\mathrm{d} t}=3x^2\left ( \frac{\mathrm{d} x}{\mathrm{d} t} \right )\\1200=3(20)^2\left ( \frac{\mathrm{d} x}{\mathrm{d} t} \right )\\\frac{\mathrm{d} x}{\mathrm{d} t} =\frac{1200}{3(20)^2}=\frac{1200}{3\times 400}=\frac{1200}{1200}=1\,\,cm/min[/tex]

So,

Length of the side is increasing at the rate of [tex]1\,\,cm/min[/tex]