one interior angle of a polygon is equal to 800 and each of the other interior angles are 128 degrees. Find the number of sides of the polygon.​

Respuesta :

Answer:

6

Step-by-step explanation:

Given information:

Interior angle of a polygon cannot be more that 180°.

One interior angle = [tex]80^{\circ}[/tex]

Other interior angles are  = [tex]128^{\circ}[/tex]

Let n be the number of sides of the polygon.​

Sum of interior angles is

[tex]Sum=80+128(n-1)[/tex]

[tex]Sum=80+128n-128[/tex]

Combine like terms.

[tex]Sum=128n-48[/tex]           .... (1)

If a polygon have n sides then the sum of interior angles is

[tex]Sum=(n-2)180[/tex]

[tex]Sum=180n-360[/tex]           .... (2)

Equating (1) and (2) we get

[tex]180n-360=128n-48[/tex]

Isolate variable terms.

[tex]180n-128n=360-48[/tex]

[tex]52n=312[/tex]

Divide both sides by 52.

[tex]n=\frac{312}{52}[/tex]

[tex]n=6[/tex]

Therefore the number of sides of the polygon is 6.