Respuesta :

Answer:

a) The elements are [tex]\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6}[/tex]

b) The elements are (-∞ ...-1,0,1,2,..∞).

c) The elements are 2 and 3.

Step-by-step explanation:

To find : List all element of the following sets ?

Solution :

a) [tex]\{\frac{1}{n}| n\in \{ 3 , 4 , 5 , 6 \} \}[/tex]

Here, The function is [tex]f(n)=\frac{1}{n}[/tex]

Where, [tex]n\in \{ 3 , 4 , 5 , 6 \}[/tex]

Substituting the values to get elements,

[tex]f(3)=\frac{1}{3}[/tex]

[tex]f(4)=\frac{1}{4}[/tex]

[tex]f(5)=\frac{1}{5}[/tex]

[tex]f(6)=\frac{1}{6}[/tex]

The elements are [tex]\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6}[/tex]

b) [tex]\{x\in \mathbb{Z} | x=x+1\}[/tex]

Here, The function is [tex]f(x)=x+1[/tex]

Where, [tex]x\in \mathbb{Z}[/tex] i.e. integers (..,-2,-1,0,1,2,..)

For x=-2

[tex]f(-2)=-2+1=-1[/tex]

For x=-1

[tex]f(-1)=-1+1=0[/tex]

For x=0

[tex]f(0)=0+1=1[/tex]

For x=1

[tex]f(1)=1+1=2[/tex]

For x=2

[tex]f(2)=2+1=3[/tex]

The elements are (-∞ ...-1,0,1,2,..∞).

c) [tex]\{n\in \mathbb{P}| \text{n is a factor of 24}\}[/tex]

Here, The function is n is a factor of 24.

Where, n is a prime number

Factors of 24 are 1,2,3,4,6,8,12,24.

The prime factor are 2,3.

The elements are 2 and 3.