Respuesta :
Answer:
Maximize C =[tex]9x + 7y[/tex]
[tex]8x + 10y \leq 17[/tex]
[tex]11x + 12y\leq 25[/tex]
and x ≥ 0, y ≥ 0
Plot the lines on graph
[tex]8x + 10y \leq 17[/tex]
[tex]11x + 12y\leq 25[/tex]
[tex]x\geq 0[/tex]
[tex]y\geq 0[/tex]
So, boundary points of feasible region are (0,1.7) , (2.125,0) and (0,0)
Substitute the points in Maximize C
At (0,1.7)
Maximize C =[tex]9(0) + 7(1.7)[/tex]
Maximize C =[tex]11.9[/tex]
At (2.125,0)
Maximize C =[tex]9(2.125) + 7(0)[/tex]
Maximize C =[tex]19.125[/tex]
At (0,0)
Maximize C =[tex]9(0) + 7(0)[/tex]
Maximize C =[tex]0[/tex]
So, Maximum value is attained at (2.125,0)
So, the optimal value of x is 2.125
The optimal value of y is 0
The maximum value of the objective function is 19.125

There are several ways to calculate optimal solution; one of them, is by using graphs.
- The optimal value of x is 2.125
- The optimal value of y is: 0
- The maximum value of the objective function is: 19.125
The given parameters are:
[tex]\mathbf{Max\ C = 9x + 7y}[/tex]
[tex]\mathbf{8x + 10y \le 17}[/tex]
[tex]\mathbf{11x + 12y \le 25}[/tex]
[tex]\mathbf{x,y\ge 0}[/tex]
See attachment for the graphs of [tex]\mathbf{8x + 10y \le 17}[/tex] and [tex]\mathbf{11x + 12y \le 25}[/tex]
From the graph, the feasible regions are:
[tex]\mathbf{(x,y) = (0,1.7), (2.125,0)}[/tex]
Test these values in the objective function
[tex]\mathbf{Max\ C = 9x + 7y}[/tex]
[tex]\mathbf{C = 9 \times 0 + 7 \times 1.7 = 11.9}[/tex]
[tex]\mathbf{C = 9 \times 2.125 + 7 \times 0 = 19.125}[/tex]
So, the value of C is maximum at: [tex]\mathbf{(x,y) = (2.125,0)}[/tex]
So, we have:
- The optimal value of x is 2.125
- The optimal value of y is: 0
- The maximum value of the objective function is: 19.125
Read more about maximizing functions at:
https://brainly.com/question/11212148
