Find the optimal solution for the following problem

Minimize C = 13x + 3y
subject to 12x + 14y ≥ 21
15x + 20y ≥ 37
and x ≥ 0, y ≥ 0.
1. What is the optimal value of x?

2. What is the optimal value of y?

3.What is the minimum value of the objective function?

Respuesta :

Answer:

Minimize C =[tex]13x + 3y[/tex]

[tex]12x + 14y \geq  21[/tex]

[tex]15x + 20y \geq 37[/tex]

and x ≥ 0, y ≥ 0.

Plot the the lines on the graph and find the feasible region

[tex]12x + 14y \geq  21[/tex]  -- Blue

[tex]15x + 20y \geq  37[/tex] --- Green

So, the boundary points of feasible region are (-3.267,4.3) , (0,1.85) and (2.467,0)

Substitute the value in Minimize C

Minimize C =[tex]13x + 3y[/tex]

At (-3.267,4.3)

Minimize C =[tex]13(-3.267) + 3(4.3)[/tex]

Minimize C =[tex]-29.571[/tex]

At (0,1.85)

Minimize C =[tex]13(0) + 3(1.85)[/tex]

Minimize C =[tex]5.55[/tex]

At (2.467,0)

Minimize C =[tex]13(2.467) + 3(0)[/tex]

Minimize C =[tex]32.071[/tex]

So, the optimal value of x is -3.267

So, the optimal value of y is 4.3

So, the minimum value of the objective function is -29.571

Ver imagen wifilethbridge