Respuesta :
Answer: x1 = 251/26, x2 = -111/26
Step-by-step explanation:
Hi!
As you can see in the figure, the point you are looking for is the intersection of two lines.
The intersection point is found solving this system of linear equations (the point must satisfy both equations):
[tex]9x_1 +7x_2=57\\4x_1 + 6x_2 = 13[/tex]
You can solve it, for example, by the method of substitution:
[tex]\text{solve for x1 in the first equation:}\\x_1 = \frac{1}{9}(57 - 7x_2)[/tex]
Then plug x1 into equation 2, and solve for x2:
[tex]\frac{4}{9}(57-7x_2) + 6x_2 = 13\\\text{doing the algebra you get:}\\x_2 = \frac{-111}{26}[/tex]
Then you use the value of x2 to get x1:
[tex]x_1 = \frac{1}{9}(57 - 7x_2)= \frac{1}{9}(57 + 7*\frac{111}{26}) = 251/26\\[/tex]

Constraints are simply the subjects of an objective function.
The point of intersection is: [tex]\mathbf{(x_1,y_1) = (9.54,-4.19)}[/tex]
The constraints are given as:
[tex]\mathbf{9x_1 + 7x_2 \ge 57}[/tex]
[tex]\mathbf{4x_1 + 6x_2 \ge 13}[/tex]
Express [tex]\mathbf{4x_1 + 6x_2 \ge 13}[/tex] as an equation
[tex]\mathbf{4x_1 + 6x_2= 13}[/tex]
Subtract 6x2 from both sides
[tex]\mathbf{4x_1 = 13 - 6x_2}[/tex]
Divide through by 4
[tex]\mathbf{x_1 = \frac{1}{4}(13 - 6x_2)}[/tex]
Substitute [tex]\mathbf{x_1 = \frac{1}{4}(13 - 6x_2)} \\[/tex] in [tex]\mathbf{9x_1 + 7x_2 \ge 57}[/tex]
[tex]\mathbf{9 \times \frac{1}{4}(13 - 6x_2) + 7x_2 \ge 57}[/tex]
Open brackets
[tex]\mathbf{29.25 - 13.5x_2 + 7x_2 \ge 57}[/tex]
[tex]\mathbf{29.25-6.5x_2 \ge 57}[/tex]
Collect like terms
[tex]\mathbf{-6.5x_2 \ge 57 - 29.25}[/tex]
[tex]\mathbf{-6.5x_2 \ge 27.25}[/tex]
Divide both sides by -6.5
[tex]\mathbf{x_2 \ge -4.19}[/tex]
Substitute -4.19 for x2 in [tex]\mathbf{4x_1 + 6x_2 \ge 13}[/tex]
[tex]\mathbf{4x_1 + 6 \times -4.19 \ge 13}[/tex]
[tex]\mathbf{4x_1 - 25.14 \ge 13}[/tex]
Add 25.14 to both sides
[tex]\mathbf{4x_1 \ge 38.14}[/tex]
Divide both sides by 4
[tex]\mathbf{x_1 \ge 9.54}[/tex]
Hence, the values are:
[tex]\mathbf{(x_1,y_1) = (9.54,-4.19)}[/tex]
Read more about inequalities at:
https://brainly.com/question/20383699