The current in a 100 watt lightbulb is 0.890 A. The filament inside the bulb is 0.280 mm in diameter. What is the current density in the filament? Express your answer to three significant figures and include the appropriate units. What is the electron current in the filament? Express your answer using three significant figures.

Respuesta :

Answer:

Current density [tex]j=1.44\times 10^7A/m^2[/tex]

Electron density [tex]=5.55\times 10^{18}electron/sec[/tex]

Explanation:

We have given power = 100 watt

Current = 0.89 A

Diameter d = 0.280 mm

So radius [tex]r=\frac{d}{2}=\frac{0.28}{2}=0.14mm=0.14\times 10^{-3}m[/tex]

Area [tex]A=\pi r^2=3.14\times (0.14\times 10^{-3})^2=0.016\times 10^{-6}m^2[/tex]

We know that current density [tex]J=\frac{I}{A}=\frac{0.89}{0.016\times 10^{-6}}=1.44\times 10^7A/m^2[/tex]

Now we have to calculate the electron density

We have current i = 0.89 A = 0.89 J/sec

Charge on 1 electron [tex]1.6\times 10^{-19}C/electron[/tex]

So electron density [tex]=\frac{0.89j/sec}{1.6\times 10^{-19}C/electron}=5.55\times 10^{18}electron/sec[/tex]