The cost of producing x hundred items is given by the equation C(x) = x2 – 3x + 7 and the revenue generated from sales of x hundred units is given by the equation R(x) = –x2 + 21x – 33. What values of x will the company break even?

Respuesta :

Answer:

At x = 2 and 10.

Step-by-step explanation:

Given : The cost of producing x hundred items is given by the equation [tex]C(x) = x^2-3x + 7[/tex]

The revenue generated from sales of x hundred units is given by the equation [tex]R(x) = -x^2 + 21x-33[/tex]

To Find :What values of x will the company break even?

Solution:

Cost function : [tex]C(x) = x^2-3x + 7[/tex]

Revenue function : [tex]R(x) = -x^2 + 21x-33[/tex]

Now to find the company break even :

[tex]-x^2 + 21x-33= x^2-3x + 7[/tex]

[tex]24x= 2x^2+40[/tex]

[tex]12x= x^2+20[/tex]

[tex]x^2-12x+20=0[/tex]

[tex]x^2-10x-2x+20=0[/tex]

[tex]x(x-10)-2(x-10)=0[/tex]

[tex](x-2)(x-10)=0[/tex]

So, x = 2,10

Hence the company break even at x = 2 and 10.