Give the ΔH value for the combustion of butane as shown in the reaction 2C4H10(g)+13O2(g)→8CO2(g)+10H2O(g)+5315 kJ.

Express your answer using four significant figures. If the value is positive, do not include the + sign in your answer.

Respuesta :

Answer:

ΔH° = -3790 kJ

Explanation:

Let's consider the combustion of butane.

2 C₄H₁₀(g) +13 O₂(g) → 8 CO₂(g) + 10 H₂O(g)

We can find the standard enthalpy of this combustion reaction (ΔH°) using the following expression.

ΔH° = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)

where,

n: mole

ΔH°f(): standard enthalpy of formation

p: product

r: reactant

ΔH° = 8 mol ×  ΔH°f(CO₂(g)) + 10 mol ×  ΔH°f(H₂O(g)) - 2 mol ×  ΔH°f(C₄H₁₀(g)) - 13 mol ×  ΔH°f(O₂(g))

ΔH° = 8 mol ×  (-393.5 kJ/mol) + 10 mol ×  (-241.8 kJ/mol) - 2 mol ×  (-888.0 kJ/mol) - 13 mol ×  0

ΔH° = -3790 kJ

Given ΔH° < 0, the reaction is exothermic.

2 C₄H₁₀(g) +13 O₂(g) → 8 CO₂(g) + 10 H₂O(g) + 3790 kJ

The ΔH value for the combustion of butane is 3790 KJ.

What are combustion reaction?

Combustion reaction are those in which the substance is reacts with oxygen and produce heat in the reaction.

Given, the reaction

[tex]\rm 2C_4H_1_0(g)+13O2(g)=8CO_2(g)+10H_2O(g)+5315\; kJ[/tex]

Calculating the enthalpy of the combustion reaction

[tex]\Delta H^\circ = \sum np \times \Delta H^\circ f(p) - \sum nr \times \Delta H^\circ f(r)[/tex]

Putting the values

[tex]\Delta H^\circ = 8\;mol \times \Delta H^\circ f(CO_2) + 10\;mol \times \Delta H^\circ f(H_2O) \times \Delta H^\circ (C_4H_1_0) -13 \;mol \times \Delta H^\circ (O_2)[/tex]

[tex]\rm \Delta H^\circ = 8\;mol \times (-393.5 kJ/mol) + 10\;mol \times (-241.8 kJ/mol) - 2 mol \times (-888.0 kJ/mol) - 13 mol \times 0\\\\\Delta H^\circ = 3790\;kJ[/tex]

Thus, the ΔH value for the combustion of butane is 3790 KJ

Learn more about combustion reaction, here:

https://brainly.com/question/6125976