Respuesta :
Answer:
ΔH° = -3790 kJ
Explanation:
Let's consider the combustion of butane.
2 C₄H₁₀(g) +13 O₂(g) → 8 CO₂(g) + 10 H₂O(g)
We can find the standard enthalpy of this combustion reaction (ΔH°) using the following expression.
ΔH° = ∑np × ΔH°f(p) - ∑nr × ΔH°f(r)
where,
n: mole
ΔH°f(): standard enthalpy of formation
p: product
r: reactant
ΔH° = 8 mol × ΔH°f(CO₂(g)) + 10 mol × ΔH°f(H₂O(g)) - 2 mol × ΔH°f(C₄H₁₀(g)) - 13 mol × ΔH°f(O₂(g))
ΔH° = 8 mol × (-393.5 kJ/mol) + 10 mol × (-241.8 kJ/mol) - 2 mol × (-888.0 kJ/mol) - 13 mol × 0
ΔH° = -3790 kJ
Given ΔH° < 0, the reaction is exothermic.
2 C₄H₁₀(g) +13 O₂(g) → 8 CO₂(g) + 10 H₂O(g) + 3790 kJ
The ΔH value for the combustion of butane is 3790 KJ.
What are combustion reaction?
Combustion reaction are those in which the substance is reacts with oxygen and produce heat in the reaction.
Given, the reaction
[tex]\rm 2C_4H_1_0(g)+13O2(g)=8CO_2(g)+10H_2O(g)+5315\; kJ[/tex]
Calculating the enthalpy of the combustion reaction
[tex]\Delta H^\circ = \sum np \times \Delta H^\circ f(p) - \sum nr \times \Delta H^\circ f(r)[/tex]
Putting the values
[tex]\Delta H^\circ = 8\;mol \times \Delta H^\circ f(CO_2) + 10\;mol \times \Delta H^\circ f(H_2O) \times \Delta H^\circ (C_4H_1_0) -13 \;mol \times \Delta H^\circ (O_2)[/tex]
[tex]\rm \Delta H^\circ = 8\;mol \times (-393.5 kJ/mol) + 10\;mol \times (-241.8 kJ/mol) - 2 mol \times (-888.0 kJ/mol) - 13 mol \times 0\\\\\Delta H^\circ = 3790\;kJ[/tex]
Thus, the ΔH value for the combustion of butane is 3790 KJ
Learn more about combustion reaction, here:
https://brainly.com/question/6125976