Answer:
[tex]\boxed{1.574 \times 10^{5}\text{ ft}^{3}}[/tex]
Explanation:
1. Mass of ship in pounds
[tex]m = \text{4795 t} \times \dfrac{\text{2000 lb}}{\text{1 t}} = 9.590 \times 10^{6}\text{ lb}[/tex]
2. Mass of ship in kilograms
[tex]m = 9.590 \times 10^{6}\text{ lb} \times \dfrac{\text{1 kg}}{\text{2.205 lb}} = 4.349 \times 10^{6}\text{ kg}[/tex]
3. Mass of ship in grams
[tex]m = 4.349 \times 10^{6}\text{ kg} \times \dfrac{\text{1000 g}}{\text{1 kg}} = 4.349 \times 10^{9}\text{ g}[/tex]
4. Volume of water displaced
[tex]V = 4.349 \times 10^{9}\text{ g} \times \dfrac{\text{ 1.025 cm}^{3}}{\text{1 g}} = 4.458 \times 10^{9}\text{ cm}^{3}[/tex]
5. Volume of water in litres
[tex]V = 4.458 \times 10^{9}\text{ cm}^{3} \times \dfrac{\text{ 1L}}{\text{1000 cm}^{3}}= 4.458 \times 10^{6}\text{ L}[/tex]
6. Volume of water in cubic feet
[tex]V = 4.458 \times 10^{6}\text{ L} \times \dfrac{\text{ 1 ft}^{3}}{\text{28.32 L}}= \mathbf{1.574 \times 10^{5}}\textbf{ ft}\mathbf{^{3}}\\\\\text{The ship will displace } \boxed{\mathbf{1.574 \times 10^{5}}\textbf{ ft}\mathbf{^{3}}} \text{ of seawater}[/tex]