When an object floats in water, it displaces a volume of water that has a weight equal to the weight of the object. If a ship has a
weight of 4795 tons, how many cubic feet of seawater will it displace? Seawater has a density of 1.025 g.cm3; 1 ton = 2000 lb.
(Enter your answer in scientific notation.)

Respuesta :

znk

Answer:

[tex]\boxed{1.574 \times 10^{5}\text{ ft}^{3}}[/tex]

Explanation:

1. Mass of ship in pounds

[tex]m = \text{4795 t} \times \dfrac{\text{2000 lb}}{\text{1 t}} = 9.590 \times 10^{6}\text{ lb}[/tex]

2. Mass of ship in kilograms

[tex]m = 9.590 \times 10^{6}\text{ lb} \times \dfrac{\text{1 kg}}{\text{2.205 lb}} = 4.349 \times 10^{6}\text{ kg}[/tex]

3. Mass of ship in grams

[tex]m = 4.349 \times 10^{6}\text{ kg} \times \dfrac{\text{1000 g}}{\text{1 kg}} = 4.349 \times 10^{9}\text{ g}[/tex]

4. Volume of water displaced

[tex]V = 4.349 \times 10^{9}\text{ g} \times \dfrac{\text{ 1.025 cm}^{3}}{\text{1 g}} = 4.458 \times 10^{9}\text{ cm}^{3}[/tex]

5. Volume of water in litres

[tex]V = 4.458 \times 10^{9}\text{ cm}^{3} \times \dfrac{\text{ 1L}}{\text{1000 cm}^{3}}= 4.458 \times 10^{6}\text{ L}[/tex]

6. Volume of water in cubic feet

[tex]V = 4.458 \times 10^{6}\text{ L} \times \dfrac{\text{ 1 ft}^{3}}{\text{28.32 L}}= \mathbf{1.574 \times 10^{5}}\textbf{ ft}\mathbf{^{3}}\\\\\text{The ship will displace } \boxed{\mathbf{1.574 \times 10^{5}}\textbf{ ft}\mathbf{^{3}}} \text{ of seawater}[/tex]