Answer:
hair grows at rate of 8.166 nm/s
Explanation:
given data:
grow rate= (1/36)in/day
we know that
1 day = 86400 seconds
therefore we have [tex]= \frac{1}{36}inc / 86400 sec[/tex]
first change equation to [tex]\frac{1}{36}inc / 86400 sec.[/tex]
Then you find x in/s [tex]= \frac{1}{36}inc / 86400 sec[/tex]
[tex]x/s = \frac{1}{36}inc / 86400 sec[/tex]
[tex](86400s)x = (\frac{1}{36}inc) s[/tex]
[tex]x = \frac{\frac{1}{36}\ inc}{86400} = 3.21 x 10^{-7} in/second[/tex]
Now convert in/sec into meters/second.
we know that 1m = 39.37in
[tex]x/1m = \frac{3.21 x10^{-7} in}{39.37\ in}[/tex]
[tex](39.37in)x = (3.21 *10^{-7} in) m[/tex]
[tex]x = \frac{3.21 * 10^{-7}}{39.37}m[/tex]
x = [tex]8.166 * 10^{-9}[/tex] m/second
Now convert [tex]8.166 * 10^{-9}[/tex] m/second into nm/second
we know that [tex]1nm = 10^{-9}m[/tex]
[tex]x/nm = \frac{8.166x 10^{-9} m/second}{10^{-9} m}[/tex]
x =8.166 nm/second
therefore hair grows at rate of 8.166 nm/s