Respuesta :
Answer:
[tex]y=1.2x+3.6\\ \\y=\dfrac{6}{7}x+6\\ \\y=\dfrac{6}{11}x+\dfrac{42}{11}[/tex]
Step-by-step explanation:
Given triangle ABC with vertices A(−3, 0), B(0, 6), and C(4, 6).
First, find midpoints of sides AB, BC and AC:
- midpoint of AB has coordinates [tex]C_1\left(\dfrac{-3+0}{2},\dfrac{0+6}{2}\right)\rightarrow C_1(-1.5, 3);[/tex]
- midpoint of BC has coordinates [tex]A_1\left(\dfrac{0+4}{2},\dfrac{6+6}{2}\right)\rightarrow A_1(2,6);[/tex]
- midpoint of AC has coordinates [tex]B_1\left(\dfrac{-3+4}{2},\dfrac{0+6}{2}\right)\rightarrow B_1(0.5, 3)[/tex]
Now find the eqyations of the medians.
1. Median at vertex A (line [tex]AA_1[/tex]):
[tex]y=\dfrac{6-0}{2-(-3)}(x-(-3))+0\\ \\y=\dfrac{6}{5}(x+3)\\ \\y=1.2x+3.6[/tex]
2. Median at vertex B (line [tex]BB_1[/tex]):
[tex]y=\dfrac{6-3}{4-0.5}(x-0)+6\\ \\y=\dfrac{6}{7}x+6[/tex]
3. Median at vertex C (line [tex]CC_1[/tex]):
[tex]y=\dfrac{6-3}{4-(-1.5)}(x-4)+6\\ \\y=\dfrac{6}{11}(x-4)+6\\ \\y=\dfrac{6}{11}x+\dfrac{42}{11}[/tex]
Answer:
y= -7/6x+6
y= -1/2x+8
x = -3
Step-by-step explanation:
Find the slope of the lines of the triangle. Then you can find the perpendicular slope of that (the slope of the altitudes) by inversing it and switching the = or - sign. Then you have a point the altitude goes through (one of the vertices) and the slope. Then you can make the equation.