Respuesta :

Answer:

[tex]y(x) = \sqrt[5]{\frac{e^{2x}}{2} + \frac{2047}{2}}[/tex]

Step-by-step explanation:

[tex]\displaystyle\frac{dy}{dx} = \displaystyle\frac{e^{2x}}{5y^4}[/tex]

Cross multiplying, we have,

[tex]5y^4 dy = e^{2x} dx[/tex]

Integrating both sides,

[tex]\int 5y^4 dy = \int e^{2x}dx[/tex]

We obtain,

[tex]y^5 = \frac{e^{2x}}{2} + C[/tex], where C is the constant of integration.

[tex]y(x) = \sqrt[5]{\frac{e^{2x}}{2} + C }[/tex]

We know that y(0) = 4

Putting these value in the above equation, we get C = [tex]\frac{2047}{2}[/tex]

Thus,

[tex]y(x) = \sqrt[5]{\frac{e^{2x}}{2} + \frac{2047}{2}}[/tex]

Answer:

4x-3=4

Step-by-step explanation: