Answer:
The energy of each photon is [tex]6.468 \times 10^{-26}[/tex] Joule.
Step-by-step explanation:
Consider the provided information.
According to the plank equation:
[tex]E=h\nu[/tex]
Where E is the energy of photon, h is the plank constant and [tex]\nu[/tex] is the frequency.
It is given that [tex]h= 6.6 \times10^{-34}[/tex] and [tex]\nu=98MHz[/tex]
98Mhz = [tex]98\times 10^6Hz[/tex]
Substitute the respective value in plank equation.
[tex]E=6.6\times 10^{-34}\times 98\times 10^6[/tex]
[tex]E=6.6\times 98\times 10^{-34+6}[/tex]
[tex]E=646.8 \times10^{-28}[/tex]
[tex]E=6.468 \times 10^{-26}[/tex]
Hence, the energy of each photon is [tex]6.468 \times 10^{-26}[/tex] Joule.