Answer:
(A) No solutions regardless of values of a and b.
Step-by-step explanation:
Asumming that the system of equations is [tex]x+2y-3z=a\\ 2x+4y-6z=2a+2[/tex], the corresponding augmented matrix of the system is [tex]\left[\begin{array}{cccc}1&2&-3&a\\2&4&-6&2a+2\end{array}\right][/tex].
If two time the row 1 is subtracted to row 1, we get the following matrix
[tex]\left[\begin{array}{cccc}1&2&-3&a\\0&0&0&2a+2-2a\end{array}\right][/tex].
Then the system has no solutions regardless of values of a and b.