contestada

A 6cm diameter horizontal pipe gradually narrows to 4cm.
Whenwater flows throught this pipe at a certain rate, the
guagepressure in these two sections is 32.0kPa and 24kPa
respectively.What is the volume rate of flow?

Respuesta :

Answer:[tex]Q=0.5612 m^3/s[/tex]

Explanation:

Given

diameter of pipe([tex]d_1[/tex])=6 cm

diameter of pipe([tex]d_2[/tex])=4 cm

[tex]P_1=32 kPa[/tex]

[tex]P_2=24 kPa[/tex]

[tex]A_1=\frac{\pi }{4}6^2=9\pi cm^2[/tex]

[tex]A_2=\frac{\pi }{4}4^2=4\pi cm^2[/tex]

[tex]v_1=\frac{Q}{A_1}[/tex]

Applying bernoulli's equation

[tex]\frac{P_1}{\rho g}+\frac{v^2_1}{2g}+z_1=\frac{P_2}{\rho g}+\frac{v^2_2}{2g}+z_2[/tex]

[tex]\frac{P_1}{\rho g}+\frac{\frac{Q^2}{A_1^2}}{2g}+z_1=\frac{P_2}{\rho g}+\frac{\frac{Q^2}{A_2^2}}{2g}+z_2[/tex]

since [tex]z_1=z_2[/tex]

[tex]\frac{32\times 10^3}{10^3\times 9.81}+\frac{Q^2}{2A_1^2g}=\frac{24\times 10^3}{10^3\times 9.81}+\frac{Q^2}{2A_2^2g}[/tex]

[tex]Q^2=\frac{8\times 2\times 81\pi ^2\times 16\pi ^2\times 10^{-4}}{65\pi ^2}[/tex]

[tex]Q^2=3149.3722\times 10^{-4} [/tex]

[tex]Q=\sqrt{3149.3722\times 10^{-4}}[/tex]

[tex]Q=0.5612 m^3/s[/tex]