Respuesta :

Answer:

([tex]\frac{9}{4},\frac{1}{4})[/tex]

Step-by-step explanation:

We are given that two lines

[tex]x_1-7x_2=5[/tex] and [tex]x_1-5x_2=1[/tex]

We have to find the intersection point of two lines

Let [tex]3x_1-7x_2=5[/tex] (equation 1)

[tex]x_1-5x_2=1[/tex] (Equation 2)

Multiply equation 2 by 3 then subtract  from  equation 1

[tex]-7x_2+15x_2=5-3[/tex]

[tex]8x_2=2[/tex]

[tex]x_2=\frac{2}{8}=\frac{1}{4}[/tex]

Substitute [tex] x_2=\frac{1}{4}[/tex] in the equation 1

Then, we get

[tex]3x_1-7\frac{1}{4}=5[/tex]

[tex]3x_1-\frac{7}{4}=5[/tex]

[tex]3x_1=5+\frac{7}{4}=\frac{20+7}{4}=\frac{27}{4}[/tex]

[tex]x_1=\frac{27}{4\times 3}=\frac{9}{4}[/tex]

Hence, the intersection point of two given lines is ([tex]\frac{9}{4},\frac{1}{4})[/tex]