Respuesta :

Answer:

nth term of this sequence is [tex](197+(n+6)\times 3^{27})[/tex]

and 100th term is [tex](197+106\times 3^{27})[/tex].

Step-by-step explanation:

The given sequence is [tex](197+7\times 3^{27}),(197+8\times 3^{27}),(197+9\times 3^{27})[/tex]

Now we will find the difference between each successive term.

Second term - First term = [tex](197+8\times 3^{27})-(197+7\times 3^{27})[/tex]

                                         = [tex](8\times 3^{27}-7\times 3^{27})[/tex]

                                         = [tex]3^{27}(8-7)[/tex]

                                         = [tex]3^{27}[/tex]

Similarly third term - second term = [tex]3^{27}[/tex]

So there is a common difference of [tex]3^{27}[/tex].

It is an arithmetic sequence for which the explicit formula will be

[tex]T_{n}[/tex]=a + (n - 1)d

where [tex]T_{n}[/tex] = nth term of the arithmetic sequence

where a = first term of the arithmetic sequence

n = number of term

d = common difference in each successive term

Now we plug in the values to get the 100th term of the sequence.

[tex]T_{n}=(197+7\times 3^{27})+(n-1)\times 3^{27}[/tex]

               = [tex](197+(n+6)\times 3^{27})[/tex]

[tex]T_{100}=(197+7\times 3^{27})+(100-1)\times 3^{27}[/tex]

                   = [tex]197+7\times 3^{27}+99\times 3^{27}[/tex]

                   = [tex]197+106\times 3^{27}[/tex]

Therefore, nth term of this sequence is [tex](197+(n+6)\times 3^{27})[/tex]

and 100th term is [tex](197+106\times 3^{27})[/tex].