Lets assume, a represents the edge length (lattice constant) of a BCC unit cell and R represents the radius of the atom in the unit cell. Draw a BCC unit cell and show the atoms in the unit cell. Derive the relationship between the a and R.

Respuesta :

Answer:

[tex]4\ R=\sqrt 3\ a[/tex]

Explanation:

Given that

Lattice constant = a

Radius of unit cell cell =R

Atom is in BCC structure.

In BCC unit cell (Body centered cube)

1.Eight atoms at eight corner of cube which have 1/8 part in each cube.

2.One complete atom at the body center of the cube

So the total number of atoms in the BCC

 Z= 1/8 x 8 + 1 x 1

Z=2

In triangle ABD

[tex]AB^2=AD^2+BD^2[/tex]

[tex]AB^2=a^2+a^2[/tex]

[tex]AB=\sqrt 2\ a[/tex]

In triangle ABC

[tex]AC^2=AB^2+BC^2[/tex]

AC=4R

BC=a

[tex]AB=\sqrt 2\ a[/tex]

So

[tex]16R^2=2a^2+a^2[/tex]

[tex]4\ R=\sqrt 3\ a[/tex]

So the relationship between lattice constant and radius of unit cell

[tex]4\ R=\sqrt 3\ a[/tex]

Ver imagen Netta00
Ver imagen Netta00