Respuesta :

Answer:

Solution: [tex]B=5+25e^{4-4t}[/tex]

Step-by-step explanation:

Given: [tex]\dfrac{dB}{dt}+4B=20[/tex]  

with B(1)=30

The differential equation in form of linear differential equation,

[tex]\dfrac{dy}{dt}+Py=Q[/tex]

Integral factor, IF: [tex]e^{\int Pdt}[/tex]

General Solution:

[tex]y\cdot IF=\int Q\cdot IFdt[/tex]

[tex]\dfrac{dB}{dt}+4B=20[/tex]  

P=4, Q=20

IF= [tex]e^{\int 4dt}=e^{4t}[/tex]

Solution:

[tex]Be^{4t}=\int 20e^{4t}dt[/tex]

[tex]Be^{4t}=5e^{4t}+C[/tex]

[tex]B=5+Ce^{-4t}[/tex]

B(1)=30 , Put t=1, B=30

[tex]30=5+Ce^{-4}[/tex]

[tex]C=25e^4[/tex]

[tex]B=5+25e^{4-4t}[/tex]