Answer:
You can use the given hint as follows:
Step-by-step explanation:
Let [tex]A[/tex] be a square matrix that is a skew-symmetric matrix. Since the matrix [tex]R={\bf x}^{T}A{\bf x}[/tex] is matrix of size [tex]1\times 1[/tex] then it can be identified with an scalar. It is clear that [tex]R=R^{T}[/tex]. Then applying the properties of transposition we have
[tex]({\bf x}^{T}A{\bf x})^{T}=({\bf x}^{T})A^{T}({\bf x}^{T})^{T}={\bf x}^{T}(-A){\bf x}=-{\bf x}^{T}A{\bf x}[/tex]
Then,
[tex]{\bf x}^{T}A{\bf x}+{\bf x}^{T}A{\bf x}=0[/tex]
[tex]2{\bf x}^{T}A{\bf x}=0[/tex]
Then,
[tex]{\bf x}^{T}A{\bf x}=0[/tex]
For all column vector [tex]{\bf x}[/tex] of size [tex]n\times 1[/tex] .