Respuesta :

Answer with Step-by-step explanation:

We are  given that  a, b, c and x are elements in the group G.

We have to find the value of x in terms of a, b and c.

a.[tex]x^2a=bxc^{-1}[/tex]

[tex]x^2ac=bxc^{-1}c=bx[/tex]

[tex]x^{-1}x^2ac=x^{-1}bx=b[/tex] ([tex]x^{-1}bx=b[/tex])

[tex]xac=b[/tex]

[tex]xacc^{-1}=bc^{-1}[/tex]

[tex]xa=bc^{-1}[/tex]    ([tex]cc^{-1}=[/tex])

[tex]xaa^{-1}=bc^{-1}a^{-1}[/tex]

[tex]x=bc^{-1}a^{-1}[/tex]

b.[tex]acx=xac[/tex]

[tex]acxc^{-1}=xacc^{-1}=xa[/tex]  ([tex]cc^{-1}=1,cxc^{-1}=x[/tex])

[tex]axa^{-1}=xaa^{-1}[/tex]  ([tex]aa^{-1}=1,axa^{-1}=x[/tex])

[tex]x=x[/tex]

Identity equation

Hence, given equation has infinite solution and satisfied for all values of a and c.