Answer:
Frequency, [tex]\nu=1.96\times 10^{20}\ Hz[/tex]
Explanation:
Given that,
Energy of a gamma rays, [tex]E=0.815\ MeV=0.815\times 10^6\ eV[/tex]
Since, [tex]1\ eV=1.6\times 10^{-19}\ J[/tex]
[tex]0.815\times 10^6\ eV=0.815\times 10^6\times 1.6\times 10^{-19}\ J[/tex]
[tex]E=1.304\times 10^{-13}\ J[/tex]
The energy of a wave is given by :
[tex]E=h\nu[/tex]
[tex]\nu[/tex] is the frequency of such a photon
[tex]\nu=\dfrac{E}{h}[/tex]
[tex]\nu=\dfrac{1.304\times 10^{-13}\ J}{6.63\times 10^{-34}\ Js}[/tex]
[tex]\nu=1.96\times 10^{20}\ Hz[/tex]
So, the frequency of such a photon is [tex]1.96\times 10^{20}\ Hz[/tex]. Hence, this is the required solution.