Respuesta :
Answer:
it move with velocity 1571 m/s
Explanation:
given data
wavelength λ = 4.63 × [tex]10^{-7}[/tex] m
to find out
how fast is it moving
solution
we will use here de Broglie wavelength equation
that is
wavelength λ = [tex]\frac{h}{mv}[/tex] ..........1
here h is planck constant = 6.626068 × [tex]10^{-34}[/tex]
and m is mass of electron i.e = 9.10938188 × [tex]10^{-31}[/tex]
and v is velocity
put all value we find velocity in equation 1
wavelength λ = [tex]\frac{h}{mv}[/tex]
v = [tex]\frac{6.626068*10^{-34}}{9.10938188*10^{-31}*4.63*10^{-7}}[/tex]
v = 1571.035464
so it move with velocity 1571 m/s
Answer:
[tex]v=1.57*10^{3}\frac{m}{s}[/tex]
Explanation:
As DeBroglie equation proved by Davisson-Germer experiment says, the wavelength of an electron is related with its velocity with the equation:
λ = [tex]\frac{h}{mv}[/tex]
where m is the mass of the electron [tex]m=9.11*10^{-31}kg[/tex], h is the Planck´s constant [tex]h=6.626*10^{-34}J.s[/tex] and v its velocity.
Solving the equation for the velocity of the electron, we have:
v = h/mλ
And replacing the values:
[tex]v=\frac{6.626*10^{-34}J.s}{(9.11*10^{-31}Kg)*(4.63*10^{-7}m)}[/tex]
[tex]v=1570.9\frac{m}{s}[/tex]
[tex]v=1.57*10^{3}\frac{m}{s}[/tex]