A round steel bar, 0.02 m in diameter and 0.40 m long, is subjected to a tensile force of 33,000 kg. Y=E= 2E10 kg/m^2. (modulus).Calculate the elongation in meters.

Respuesta :

Answer:

The elongation in the bar equals 2.1 millimeters.

Explanation:

We know from Hooke's Law

[tex]\sigma =E\times \epsilon[/tex]

Where

[tex]\sigma [/tex] is stress in the material

[tex]\epsilon [/tex] is strain in the material

'E' is the young's modulus of the material

Now we know that

[tex]stress =\frac{Force}{Area}[/tex]

Applying values we get

[tex]\sigma =\frac{33000}{\frac{\pi }{4}\times (0.02)^{2}}=105.042\times 10^{6}kg/m^{2}[/tex]

Applying the values in the Hooke's relation we obtain

[tex]\epsilon =\frac{\sigma }{E}\\\\\epsilon =\frac{105.042\times 10^{6}}{2\times 10^{10}}=0.0052521[/tex]

Now by definition of strain we have

[tex]\epsilon =\frac{\Delta L}{L_{o}}\\\\\Delta L=0.0052521\times 0.4\times 10^{3}=2.1mm[/tex]