A cylindrical specimen of some metal alloy having an elastic modulus of 126 GPa and an original cross-sectional diameter of 4.0 mm will experience only elastic deformation when a tensile load of 2380 N is applied. Calculate the maximum length of the specimen before deformation if the maximum allowable elongation is 0.44 mm.

Respuesta :

Answer:

The maximum length of the specimen is 0.2927 m or 292.7 mm

Solution:

Modulus of elasticity, E = 126 GPa = [tex]126\times 10^{9}[/tex]

Diameter of the cross-section, D = 4.0 mm = [tex]4.0\times 10^{- 3} m[/tex]

Force due to tension, F = 2380 N

Maximum elongation, [tex]\Delta L = 0.44 mm = 0.44\times 10^{- 3} m[/tex]

Now,

The maximum length of the specimen, [tex]L_{m}[/tex] can be calculated as follows:

The cross-sectional area, [tex]A_{c} = \frac{\pi D^{2}}{4} = \frac{\pi\times (4.0\times 10^{- 3})^{2}}{4} = 1.256\times 10^{- 5} m^{2}[/tex]

Now, the stress on the specimen, [tex]\sigma_{s} = \frac{F}{A_{c}} = \frac{2380}{1.256+\times 10^{- 5}}[/tex]

[tex]\sigma_{s} = 1.89\times 10^{8} N/m^{2}[/tex]

Now,

The strain on the specimen, [tex]\epsilon_{s}[/tex]:

[tex]\epsilon_{s} = \frac{\Delta L}{L_{m}}[/tex]

Also, from Hooke's law:

[tex]E = \frac{\sigma_{s}}{epsilon_{s}}[/tex]

⇒ [tex]E = \frac{1.89\times 10^{8}}{\frac{\Delta L}{L_{m}}}[/tex]

⇒ [tex]L_{m} = \frac{\Delta Ltimes E}{1.89\times 10^{8}}[/tex]

⇒ [tex]L_{m} = \frac{0.44\times 10^{- 3}\times 126\times 10^{9}}{1.89\times 10^{8}} = 0.2927 m[/tex]

The maximum length of the specimen before deformation is:           292.72 mm (0.2927 m).

Tensile Properties

For solving this question, it's necessary to know some concepts about the material's properties.

The tensile stress (σ) is determined from the ratio between load and original area before the load applied (σ=[tex]\frac{F}{Ao}[/tex]). Depending on the load applied, the material can have an elastic deformation (temporary deformation) and plastic deformation (permanent deformation). Both deformations can be calculated by the equation: ε=ΔL/Lo, where ΔL= deformation elongation and Lo= the original length before the load applied.

Elastic Deformation

When the material is in the elastic portion, there is a linear relationship between stress and strain given by: σ=Eε. Due to this relationship, it is possible to find the elastic deformation (ε) when we know the stress (σ) and elastic modulus (E).

Now you have the necessary information to solve your question.

The question gives:

E (elastic modulus) =126 GPA

d (original cross-sectional diameter)=4 mm

F (tensile load)=2380 N

ΔL (maximum allowable elongation) =0.44 mm

       1. Find the area of the cylindrical specimen.

  1. [tex]Ao=\frac{\pi *d^2}{4} =\frac{\pi *4^2}{4}=\pi *4=12.57 mm^2[/tex]

       2. Find the tensile stress.

          σ= [tex]\frac{F}{Ao} =\frac{2380 N }{12.57 mm^2} =189.39 MPa[/tex]

   

      3. Calculate the maximum length of the specimen before deformation.

       Knowing that  ε=ΔL/Lo and σ=Eε, you can rewrite these equations as:

                                      σ= E * (ΔL/Lo)

                                      σ= (E * ΔL)/Lo

   The question asks the maximum length of the specimen before deformation, therefore you should find Lo. Thus,

                                     Lo= (E * ΔL)/σ

                  [tex]Lo=\frac{126*10^3 MPa*0.44 mm}{189.39 MPa} =292.72 mm= 0.2927 m[/tex]

Read more about the tensile stress here:

https://brainly.com/question/19756298